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de Lyon, 69634 Lyon, France

Received 24 July 1996

Abstract. We present an analytic Migdal–Kadanoff renormalization group analysis of the
random field Ising model. The renormalization flows to a zero-temperature critical point, from
which we calculate independently three critical exponents in arbitrary dimension. In three
dimensions the magnetization exponentβ ≈ 0.02, and the Schwartz–Soffer inequality is almost
satisfied as an equality. Expanding analytically inε = d − 2 we find thatβ and the distance
from the upper bound of the equality go to zero exponentially with 1/ε2.

After much confusion, a coherent picture of the phase transition in the three-dimensional
random field Ising model (RFIM) is at last emerging (for reviews see for example [1–3]).

The Hamiltonian for the RFIM is

H = −J
∑
〈i,j〉

SiSj −
∑

i

hiSi Si = ±1 (1)

whereJ is a ferromagnetic coupling constant (J > 0) andhi is a random field at sitei
which we take to have a Gaussian distribution

P(hi) = 1√
2πh

exp

[
− (hi − h0)

2

2h2

]
(2)

with mean valueh0 and varianceh.
The very existence of ferromagnetic order in the three-dimensional RFIM has been the

subject of an intense debate. Using physical arguments, Imry and Ma [4] predicteddc = 2.
However, Parisi and Sourlas [5] founddc = 3, following a more rigorous perturbation
expansion about the upper critical dimensiond = 6. It was therefore perhaps surprising
to find convincing evidence of a transition from experiments on realizations of the RFIM
such as the diluted antiferromagnet FexZn1−xCl2 in a magnetic field [6]. Subsequently,
exact calculations showed that, for weak random fields, a magnetic phase is stable at low
temperatures [7, 8]. There is, therefore, little doubt now that a phase transition does exist
in three dimensions and interest has passed on to the details.

It has been suggested that the transition could be first order [9, 10]; however a growing
body of work has recently emerged showing it to be second order, driven almost first order
by the random fields [11–14].

The perturbation calculation [5] predicts ‘dimensional reduction’ with critical exponents
in the presence of random fields equal to those for the pure model in two fewer dimensions:
d ′ = d − 2. This implies only two independent exponents. However, in principle there
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are three: the transition is characterized by a zero-temperature fixed point in the variable
ω = h/J [15]. As the system renormalizes to zero temperature, the disconnected part of
the susceptibility is by itself divergent and characterized by exponentη:

χdis(q) = [〈Sq〉〈S−q〉
] ∼ 1/q4−η. (3)

Here 〈. . .〉 represents the thermal average, and [. . .] the average over the random
variables. Dimensional reduction givesη = η, with η the usual susceptibility exponent.
Phenomenological scaling arguments [16, 17], on the other hand, lead to a modified
dimensional reductiond ′ = d − θ = d − 2 + η − η, where θ or η would correspond
to a third independent exponent. An upper bound is given to this third exponent by the
Schwartz–Soffer [18] inequalityη 6 2η. The most reliable numerical estimates of the
exponents come from series expansions [19], where one finds the inequality satisfied as an
equality to the third significant figure. If this is rigorously true one returns,de facto, to a
situation with two independent exponents.

In this letter we present an analytic real space renormalization group (RSRG) calculation
using the Migdal–Kadanoff (MK) technique. We calculate the critical exponents in arbitrary
dimension by expanding the renormalization equations close to the zero-temperature fixed
point [15]. In three dimensions we find a value for the magnetization exponentβ ≈
0.02. The Schwartz–Soffer [18] inequality is almost satisfied as an equality and from a
development inε = d − 2 we find that bothβ andη − 2η tend to zero exponentially with
1/ε2.

We begin with a decimation procedure for a one-dimensional chain, which we then
generalize to dimensions-d using the Migdal–Kadanoff approximation. Evaluating the trace
over alternate spins on anN spin chain, the relevant part of the new partition function for
an N/2 spin chain can be expressed in the form

Zi−1,i+1 = δ expβ[J ′
i−1,i+1Si−1Si+1 + h′

i−1Si−1 + h′
i+1Si+1] (4)

whereβ = 1/kBT andδ is a constant. The transformations forJ ′
i−1,i+1 andh′

i in terms of
the initial variables are given by

J ′
i−1,i+1 = 1

4β
log

(
coshβ(Ji−1,i + Ji,i+1 + hi) coshβ(Ji−1,i + Ji,i+1 − hi)

coshβ(−Ji−1,i + Ji,i+1 + hi) coshβ(Ji−1,i − Ji,i+1 + hi)

)
h′

i+1 = hi+1 + Hi+1,−1 + Hi+1,+1

Hi+1,σ = 1

4β
log

(
coshβ(Ji+1,i+1+σ + Ji+1+σ,i+1+2σ + hi+1+σ )

coshβ(Ji+1,i+1+σ + Ji+1+σ,i+1+2σ − hi+1+σ )

)
+ 1

4β
log

(
coshβ(Ji+1,i+1+σ − Ji+1+σ,i+1+2σ + hi+1+σ )

coshβ(−Ji+1,i+1+σ + Ji+1+σ,i+1+2σ + hi+1+σ )

)
. (5)

The transformation does not maintain the initial conditions, and after a single iteration the
initially constant exchange parameters develop random components. The fieldhi on the
decimated site is shared between sitesi ± 1 in the new space throughHi−1,+1 andHi+1,−1,
which introduces correlations betweenJ ′

i−1,i+1 andh′
i±1 [13]. We are not able to treat these

correlations analytically in a satisfactory manner, and we are forced to approximate the
transformation for further iterations by replacingJi,j on the right-hand side of equation (5)
by the first moment of the distributionJ = Ji,j evaluated at the previous iteration. Under
this approximation the fluctuations of the random fields are underestimated. We rectify this
by replacingHi+1,−1 + Hi+1,+1 in equation (5) by 2Hi+1,−1, wherebyh′

i+1 depends onhi

andhi+1 but no longer depends onhi+2.
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To understand this further one should consider the renormalization of the random fields
in the absence of correlations and as the bond strengthJ goes to zero. Rescaling by a factor
b involves replacing an element of volumebd by a single point in a renormalized space.
Under these conditions the rescaled field variance is given by uncorrelated fluctuations of
the random field within the volume element,h′ = bd/2h. If the random fieldshi, hi+2, . . .

from the decimated spins are shared between two different sites (i − 1 and i + 1, i + 1
and i + 3, . . .) without correlations being taken into account, then the new field are of the
form h′

i+1 = hi+1 + 1/2(hi + hi+2), which gives a field varianceh′ = √
3/2h; less than the

value
√

2h imposed by dimensionality. We see that without the neglected correlations the
fluctuations of the random field would be smoothed over and the effect of the random field
implicitly underestimated. If the fields are repartitioned as proposed above, one immediately
finds an upper bound for the renormalized field,h′

i+1 = hi+1 + hi , which gives the correct
field varianceh′ = √

2. This is the value one would find from the exact decimation in the
limit as the coupling constants vanish, if the correlations were treated correctly. This series
of approximations is best testeda postori.

Figure 1. The Migdal–Kadanoff scheme with field partition, in two dimensions. Bonds are
displaced from the dotted to the double lines. The fieldshi on the removed sites (open circles)
are placed on one of the four sites,k, with probabilityP = 1

4 .

The Migdal–Kadanoff [20] scheme poses equally delicate, and related problems for the
random field. A two-dimensional symmetric bond moving scheme, which lends itself well
to analytic work, is shown in figure 1. The field on the central spin must be partitioned
among the remaining sites, as in the renormalization 2d field elements must contribute to
the single point in the new space. In any symmetric partitioning, for example placing1

4
of the field hi on each of the sites,k, one is faced with the same problem as before: the
fluctuations of the random field are smoothed over, and its effect is underestimated. The
correct procedure is, rather, to attribute the central field to any one of the sitesk with
probability P = 1

4. To see this one must again consider dimensional arguments for the
random fields in the limit of zero coupling constants. As any site,k, can receive fields from
two neighbouring cells, the total fieldh∗

k is either the original field only, the sum of two
fields, or of three fields, with probabilitiesP = 9

16,
3
8, or 1

16, respectively. The variance of
the distribution for the field on sitek is therefore(h∗)2 = 3/2h2. Each renormalized cell
contains two fields of the typeh∗

k , plus a field from a corner site, so we have the total field
varianceh′2 = h2 + 2(h∗)2 = 4h2. Thus we find the correct upper bound for the rescaled
random fields.
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The procedure also works in three dimensions [21] where we find(h∗)2 = 7/3h2, after
which we are able to propose the generalization to to thed dimensions:

(h∗)2 = 2d − 1

d
h2. (6)

We emphasize that, with this choice for the field partitioning our calculation predictsdc = 2,
in agreement with Imry–Ma arguments. For any field partition that underestimates the
random field fluctuations we find 1< dc < 2. This is a general result. In fact one can work
backwards, imposing Imry–Ma arguments at the outset and arriving at equation (6) in the
approximation where theJi,j are constant.

Following the bond moving scheme, we replaceJ by αdJ , αd = 2d−1, on the right-hand
side of equations (5). We then average the terms involvingJ andhi over a field distribution
with varianceh∗. Our d-dimensional decimation equations finally read

J ′ = 1

2β

∫ ∞

−∞
dt P (t) log

coshβ(2αdJ + t)

coshβt

h′2 = h2 + d

4β2

∫ ∞

−∞
dt P (t) log2 coshβ(2αdJ + t)

coshβ(2αdJ − t)

h′
0 = h0 + d

2β

∫ ∞

−∞
dt P (t) log

coshβ(2αdJ + t)

coshβ(2αdJ − t)

P (t) = 1√
2πh∗ exp− (t − h∗

0)
2

2h∗2
h∗

0 = 2d − 1

d
h0. (7)

The natural variables for discussing the renormalization areT/J and ω = h/J , together
with the constant magnetic fieldh0. The zero-field fixed point is unstable to disorder and the
ferromagnetic and paramagnetic phases are separated by a critical line, with all trajectories
near the phase boundary flowing towards a new ‘zero-temperature’ fixed point atT/J = 0
[15] with ω = ωc. The valueωc and the critical exponents can be found by expanding the
equations (7) atT = 0. After some tedious manipulation we find

J ′ = αdJφ(ω∗/
√

2αd)

ω′2J ′2/J 2 = ω2{1 + (2d − 1) erf(αd

√
2/ω∗)} + 4dα2

d{1 − erf(αd

√
2/ω∗)}

−2

√
2

π
dαdω

∗ exp

(
−2α2

d

ω∗2

)
h′

0 = h0{1 + (2d − 1) erf(αd

√
2/ω∗)}

φ(x) = 2
∫ 1/x

0

dt√
π

exp(−t2)(1 − xt) (8)

where erf(x) is the error function andω∗ = h∗/J . The functionφ(ω) is positive forω > 0,
it decreases asω increases, and is contained within the interval [0,1].

Eliminating J and J ′ in equations (8) and settingω = ω′ = ωc we find an implicit
equation for the critical field which can be solved numerically. In three dimensions
ωc = 1.956, and we recuperate the correct lower critical dimension,dc = 2 by setting
ωc = 0. Close to the fixed point the renormalization equations for a change of scaleb take
the form

(h0/T )′ = bx(h0/T ) (T /J )′ = b−y(T /J ) t ′ = bzt t = ω − ωc (9)

with x, y, andz all positive [15]. Putting equations (8) and (9) equal and linearizing with
respect tot , T/J , andh0 we solve numerically forx, y, z in d dimensions [21]. Using the
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scaling relations for the RFIM [15]

ν = 1/z 2 − α = (d − y)ν β = ν(d − x)

γ = (2x − y − d)ν δ = (x − y)/(d − x)

η = d + 2 + y − 2x η = d + 4 − 2x (10)

we find the following complete set of exponents in three dimensions:

ωc = 1.956 x = 2.991 y = 1.491 z = 0.449

ν = 2.23 β = 0.02 α = −1.360 γ = 3.318

η = 0.510 η = 1.019 η − 2η = −0.002. (11)

Our results are in very close agreement with stochastic Migdal–Kadanoff renormalization
results [13, 14], which is rather encouraging. Most notably, in stochastic approaches one is
able to retain the fluctuations induced in the coupling constants by the random fields. From
our calculation it seems that these fluctuations are almost exactly compensated for, at least
within the Migdal–Kadanoff approximation, by our field exchange procedure.

Our value ofβ = 0.02 can be compared withβ = 0.05 from the energy minimization
scheme of Ogielski [11],β = 0.02 from stochastic Migdal–Kadanoff [13] andβ =
0.00 ± 0.05 from Monte Carlo simulation [22]. With four different approaches giving
similar small values for the magnetization exponent we begin to get an established picture
of the the random field disorder driving the transition to the limit of being first order.

We gain more insight into the general trends for the exponents by expanding analytically
in powers ofε = d − 2, where to first order inε we recover the analytic results of Cao and
Machta [13].

x = d = 2 + ε y = d/2 = 1 + ε/2 z = d/2 − 1 = ε/2. (12)

These differ slightly from the first calculation by Bray and Moore [15], as one findsν = 2/ε,
compared with their value ofν = 1/ε. To orderε we, therefore, findη − 2η = 0 and two
independent parameters only.

One can show that the leading contribution to bothβ andη−2η is exponential in 1/ε2.
After some calculation we find

β = 3

4
exp

(
− 4

πε2 log2 2

)
η − 2η = −3πε3 log2 2

32
exp

(
− 4

πε2 log2 2

)
(13)

which explains the consistently small values in the literature.
All numerical work gives the Schwartz–Soffer inequality satisfied as an equality

[13, 14, 19, 22] within the numerical errors and from series expansions one finds 2η = η in
d = 3, d = 4, andd = 5. However, in a replica calculation Mezard and Young predict
a solution forη − 2η < 0 with values lying in a narrow range close to zero, but which
they are unable to calculate. In our scheme, which does not suffer from statistical error, we
are able to quantify the margin by which the equality is not satisfied. We remark that with
this exponential dependence, our results are consistent with both the high-precision series
expansion and the replica calculation.

In figure 2 we showη andη, together withη − 2η againstd. In contrast to the series
expansion, the difference,η − 2η, begins to grow betweend = 3 andd = 4. This could
indicate a development towards the ‘dimensional reduction’ resultη = η at d = 6 [12].
However,η andη do not fall smoothly towards zero as one approachesd = 6, rather they
reach minimum values betweend = 4 andd = 5. This indicates the breakdown of the
Migdal–Kadanoff scheme at higher dimension, as one might expect from results on the pure
system.
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Figure 2. Exponentsη, η̄, and the differencēη − 2η against the dimensiond.

In this letter we have shown that the exponents of the random field Ising model can
be calculated analytically with precision, following a series of three physically motivated
approximations. The most notable of these is the neglect of the disorder induced into
the renormalized coupling constants by the random fields. Within the framework of this
approximation, two subsequent steps impose the correct upper bound for the random field
fluctuations in the renormalized space. We find excellent agreement with stochastic methods,
and in addition are able to directly address the question of the number of independent
exponents. We find that the deviation from two-parameter scaling is exponentially small in
ε = d − 2, and find the same exponential dependence for the magnetization exponentβ.

It is a pleasure to thank S T Bramwell and M J PGingras for valuable comments.
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